If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=2x^2+10x-1128
We move all terms to the left:
0-(2x^2+10x-1128)=0
We add all the numbers together, and all the variables
-(2x^2+10x-1128)=0
We get rid of parentheses
-2x^2-10x+1128=0
a = -2; b = -10; c = +1128;
Δ = b2-4ac
Δ = -102-4·(-2)·1128
Δ = 9124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9124}=\sqrt{4*2281}=\sqrt{4}*\sqrt{2281}=2\sqrt{2281}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{2281}}{2*-2}=\frac{10-2\sqrt{2281}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{2281}}{2*-2}=\frac{10+2\sqrt{2281}}{-4} $
| 2^2-x=3 | | (5+2i)(3-4i)=0 | | -5=-r-3 | | 5(u-67)+3=93 | | 6x+19x-10=5(5x+8) | | 9x-13=-13,x-8 | | 3=3/x | | 3=6/h | | 6x+2+11x-4=100 | | 3=j+3/3 | | 2^x+2=8 | | 61/6=-4(n-1) | | 2=2(y+2) | | 3(w-6)-7w=2 | | 39x+64=39x+73 | | X-1/2=x+5/2 | | 3=j+1 | | 9x-84=131 | | -18=2(v+6)-7v | | -5=-2-e | | 7y+2=5y-12 | | 28m+28=35m+21 | | (y+5)(y-6)=0 | | 6(-1)-2y=12 | | -24=6(y-5)-4y | | 6x+10x-4=4(4x+7) | | 6x+10x-4=4(4x+7 | | 60=x/13 | | -x-23=6x+26 | | 1=2/q | | 120-23x=50-3x | | 2=6/o |